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Abstract. We give examples and some general results about impartial
games, those in which both players are allowed the same moves at any
given time.

1. Introduction

We continue our introduction to combinatorial games with a survey of im-
partial games. Most of this material can also be found in WW [Berlekamp
et al. 1982], particularly pp. 81–116, and in ONAG [Conway 1976], particu-
larly pp. 112–130. An elementary introduction is given in [Guy 1989]; see also
[Fraenkel 1996], pp. ??–?? in this volume.

An impartial game is one in which the set of Left options is the same as the
set of Right options. We’ve noticed in the preceding article the impartial games

{ | } = ∗0 = 0, {0 | 0} = ∗1 = ∗ and {0, ∗ | 0, ∗} = ∗2.

that were born on days 0, 1, and 2, respectively, so it should come as no surprise
that on day n the game

∗n = {∗0, ∗1, ∗2, . . . , ∗(n−1) | ∗0, ∗1, ∗2, . . . , ∗(n−1)}
is born. In fact any game of the type

{∗a, ∗b, ∗c, . . . | ∗a, ∗b, ∗c, . . .}
has value ∗m, where m = mex{a, b, c, . . .}, the least nonnegative integer not in
the set {a, b, c, . . .}. To see this, notice that any option, ∗a say, for which a > m,
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is reversible, both as a Left option and as a Right option, because ∗m is an
option of ∗a,

∗m is both ≥ and ≤ {∗a, ∗b, ∗c, . . . |∗a, ∗b, ∗c, . . .}

so that ∗a may be replaced by the options of ∗m, namely 0, ∗, ∗2, . . . , ∗(m− 1).
This is the inductive step that proves the Sprague–Grundy theorem [Sprague

1935–36; Grundy 1939], which states that every position in an impartial game
(or, which is the same, every impartial game) is equivalent to a nim-heap (see
page ??ff. in Fraenkel’s article in this volume).

SInce the Left and Right options are the same, ∗n is its own negative, ∗n+∗n =
0. Also, we need only write one set of options, and may define the nimber

∗n = {0, ∗, ∗2, . . . , ∗(n−1)}.

This exactly parallels John von Neumann’s definition of ordinal numbers.

2. Examples of Impartial Games

We all know that the game of Nim is played with several heaps of beans. A
move is to select a heap, and to remove any positive number of beans from it,
possibly the whole heap. Any position in Nim is therefore the sum of several
one-heap Nim games. The value of a single heap of n beans is ∗n.

It’s easy to see how to win a game of Nim if there’s only one (nonempty) heap:
take the whole heap! But it’s worth pausing for a moment to note exactly what
your options are. They are to move to any smaller sized heap: they correspond
exactly to the options in the definition of ∗n. It’s also fairly easy to play well at
two-heap Nim: if the heaps are unequal in size, remove enough beans from the
larger to make the heaps equal. If the two heaps are already equal, then hope
that it is your opponent’s turn to move. From then on, use the Tweedledum and
Tweedledee Principle: whatever your opponent does to one heap, you copy in the
other. For more than two heaps, the theory is more tricky. It was discovered by
Bouton [1902]. Imagine each heap to be partitioned into distinct powers of two.
For example, Figure 1 shows four heaps of 27, 23, 22 and 15 beans partitioned
in this way.

We can pair off and then ignore heaps of equal size, so concentrate on the
columns with an odd number of parts, the ones, fours and sixteens. A good
move would be to take 16 + 4 + 1 = 21 from the 23 heap. If you leave a position
for your opponent in which each power of two occurs evenly often, he will have
to change the parity in at least one column, and then you will be able to restore
it. Notice that finding a good move does not depend on there being appropriate
powers of two all in the same row (heap). You could also take 16 − 4 + 1 = 13
from the 27 heap, or 16 + 4− 1 = 19 from the 22 heap. Find three good moves
from the Nim position {23, 19, 13, 12, 11}.
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Figure 1. How to look at a Nim position.

Figure 2. A game of Nimble.

Nimble is played with coins on a strip of squares (Figure 2). Take turns,
moving just one coin to the left. You can jump onto or over other coins, even
clear off the strip. You can have any number of coins on a square. The last
player wins. Can you analyze this game? Suppose that you are not allowed to
jump off the strip, so that the game ends when all coins are stacked on the left
hand square. Can your analysis be modified to cope with this variant?

In the game shown in Figure 3, you’re allowed at most one coin on a square,
and you’re not allowed to jump over other coins. A move is to slide a coin
leftwards as far as you like, but not onto or over the next coin, and not off the
end of the strip. The analysis is now more cunning: the black marks on the side
of the strip may give you a hint.

Figure 3. A coin-sliding game.
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Figure 4. De Bruijn’s Silver Dollar Game.

Figure 4 shows N. G. de Bruijn’s Silver Dollar Game, which is played like the
previous game, but one coin is worth much more than all the others put together,
the leftmost square is replaced by a money-bag, and there’s the additional option
of taking the money-bag. If you do this, your opponent gets the coins left on
the strip. When you’ve solved that game, consider the variant in which the
additional option is to slide a coin and take the money-bag, all in one move.

Poker Nim is played like Nim, but with poker chips in place of beans; as well
as removing chips from a heap, you may instead add chips to a heap. How does
this affect play?

In Northcott’s Game there is one checker of each color on each row of a checker-
board (Figure 5). A move is to slide one of your checkers any number of squares
in its own row, without jumping over your opponent’s checker and without going
off the board. This looks like a partizan game, and many people can’t see any

Figure 5. Northcott’s Game.
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point to it, and slide the checkers aimlessly. Indeed, the game doesn’t appear to
satisfy the ending condition, but there is a winner, and she can force the game
to end. Remember that the aim is to be the last player to move.

Lasker’s Nim is played like ordinary Nim, but with the additional option that
you are allowed to split a heap into two smaller, nonempty heaps.

3. Nim-Addition

(See ONAG, pp. 50–51; WW, pp. 60–61.) We know that ∗n+0 = ∗n and that
∗n + ∗n = 0, and it’s not hard to see that addition of impartial games, indeed
of any of our games, is commutative and associative. Let’s calculate

∗2+∗ = {0, ∗}+{0} = {0+∗, ∗+∗, ∗2+0} = {∗, 0, ∗2} = ∗3.

Add ∗, or ∗2, to each side and obtain ∗2 = ∗3 + ∗ and ∗ = ∗3 + ∗2. In general,

∗a+∗b = {0, ∗, ∗2, . . . , ∗(a−1)}+{0, ∗, ∗2, . . . , ∗(b−1)}
= {0+∗b, ∗+∗b, . . . , ∗(a−1)+∗b, ∗a+0, ∗a+∗, . . . , ∗a+∗(b−1)},

and we can build a nim-addition table (Table 1) by noting that the options of an
entry are just the earlier entries in the same row and the earlier entries in the same
column. Each entry in Table 1 is the least nonnegative integer not appearing as
an earlier entry in the same row or column. For instance, ∗5 + ∗6 = ∗3, because
3 is the first number not in the set {5, 4, 7, 6, 1, 0, 6, 7, 4, 5, 2}, i.e., the first six
entries in row 5 and the first five entries in column 6. In the usual language, 3
is the nim-sum of 5 and 6, which is sometimes written 5

∗
+ 6 = 3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 1. Nim-addition table. The stars have been omitted; i.e., the entries are

nim-values instead of nimbers.
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Contrast the two equations ∗5 + ∗6 = ∗3 and 5
∗
+ 6 = 3. In the first the

summands are nimbers, i.e., values of impartial games, and the addition is a
game sum. In the second the summands are nim-values and the addition is
nim-addition.

Nim-addition is perhaps better known as addition without carry in base 2,
or vector or coordinatewise addition over GF(2), or XOR (exclusive or): it is
reassuring that it also follows from the more general idea of game sum.

Many of the games mentioned in the previous section are disguises for Nim,
often with the addition of reversible moves, which we mentioned in the preceding
article. As we saw in the Introduction, every impartial game is equivalent to a
bogus nim-heap, i.e., a heap of m beans (“m” for “mex”), together with some
(reversible) options that increase the size of the heap.

To summarize the Sprague-Grundy theory: the nim-value of the sum of two
impartial games is the nim-sum of their separate nim-values. Impartial games
belong to one of only two outcome classes: all positions are either

P-positions previous-player-winning nim-value zero, or
N-positions next-player-winning nonzero nim-value.

In the literature, P-positions are sometimes called “safe” or “good” or “winning”
without indicating which player enjoys this happy situation.

4. Subtraction Games

(See WW, pp. 83–86, 487–498.) Subtraction games are very simple examples
of impartial games, played, like Nim, with heaps of beans. A move in the game
S(s1, s2, s3, . . .) is to take a number of beans from a heap, provided that number
is a member of the subtraction-set, {s1, s2, s3, . . .}. Analysis of such a game and
of many other heap games is conveniently recorded by a nim-sequence,

n0n1n2n3 . . . ,

meaning that the nim-value of a heap of h beans is nh, h = 0, 1, 2, . . . , i.e., that
the value of a heap of h beans in this particular game is the nimber ∗nh. In this
section, and often later, to avoid printing stars, we say that the nim-value of a
position is n, meaning that its value is the nimber ∗n.

Table 2 shows some examples: the first is a manifestation of She-Loves-Me-
She-Loves-Me-Not; the last is Nim. If the subtraction-set is finite, the nim-
sequence is (ultimately) periodic. But little is known about the length of the
period vis à vis the membership of the subtraction set.

In subtraction games the nim-values 0 and 1 are remarkably related by Fer-
guson’s Pairing Property [Ferguson 1974; WW, pp. 86, 422]: if s1 is the least
member of the subtraction-set, then

G(n) = 1 just if G(n− s1) = 0.
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Subtraction game Nim-sequence (ultimate) Period
S(1) 0̇1̇01010101 . . . 2
S(2) 0̇011̇0011001100 . . . 4
S(3) 0̇00111̇0001110001110 . . . 6
S(1, 2) 0̇12̇0120120120 . . . 3
S(1, 2, 3) 0̇123̇0123012301230 . . . 4
S(1, 2, 3, 4) 0̇1234̇0123401234012340 . . . 5
S(2, 4, 7) 001122031̇02̇10210210 . . . 3
S(2, 5, 6) 0̇0110213021̇0011021302100 . . . 11
S(4, 10, 12) 0̇000111100221133002211̇0000 . . . 22
S(1, 2, 3, 4, . . .) 0123456789 . . . (saltus 1 and) 1

Table 2. Nim-sequences and periods for subtraction games.

Here and later “G(n) = v” means that the nim-value of a heap of n beans is v.

5. Take-and-Break Games

(See WW, pp. 81–106.) Guy and Smith [1956] devised a code classifying a
broad range of impartial games played with heaps or rows. Suppose a game has
code

d0·d1d2d3 . . . ,

where the code digits dk are nonnegative integers. If the binary expansion of dk

is
dk = 2ak + 2bk + 2ck + · · · ,

where 0 ≤ ak < bk < ck < · · · , then it is legal to remove k beans from a heap,
provided that the rest of the heap is left in exactly ak or bk or ck or . . . nonempty
heaps.

In order that the game should satisfy the ending condition, d0 must be divis-
ible by 4, i.e., a0 ≥ 2.

Subtraction games are the special case ds = 3 when s is in the subtraction-set,
and dk = 0 otherwise.

Octal games are those with code digits dk ≤ 7 for all k. Guy and Smith
showed that an octal game is ultimately periodic with period p, i.e.,

G(n + p) = G(n) for all n > n0 = 2e + p + t,

provided that G(n + p) = G(n) for n ≤ n0 apart from some exceptional values
of n, of which e is the largest, and dk = 0 for k > t, i.e., the maximum number
of beans that may be taken from a heap in a single move is t. Whether all such
finite octal games are ultimately periodic remains a difficult open question. They
cannot be arithmetically periodic: that is, there is no period p and saltus s > 0,
such that G(n + p) = G(n) + s for all large enough n (WW, p. 114).
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Table 3 exhibits some specimen games, of which the last three are hexadecimal
games with dk ≤ 15 = F. Such games may be arithmetically periodic. Anil
Gangolli and Thane Plambeck established the ultimate periodicity of four octal
games that were previously unknown:

The game .16 has period 149459 (a prime!), the last exceptional value be-
ing G(105350) = 16. The game .56 has period 144 and last exceptional value
G(326639) = 26. The games .127 and .376 each have period 4 (with cycles
of values 4, 7, 2, 1 and 17, 33, 16, 32 respectively) and last exceptional values
G(46577) = 11 and G(2268247) = 42.

Grundy’s Game [Grundy 1939; WW, p. 111], in which the move is to split a
heap into two unequal heaps, continues to defy complete analysis, despite Mike
Guy’s calculation of the first ten million nim-values. Among these values,

0, 1, 6, 7, 10, 11, 12, 13, 18, 19, 20, 21, 24, . . .

occur quite rarely. When written in binary, these values contain an even number
of ones if you ignore the last digit. These rare values form a closed space (the
sparse space) under nim-addition, while the complement forms the common coset:

rare
∗
+ rare = rare = common

∗
+ common

rare
∗
+ common = common = common

∗
+ rare

If the nim-values in a sequence begin to cluster in a suitable common coset,
this clustering is likely to persist. In Kayles the rare and common values are
evil and odious numbers respectively, with an even and odd number of ones in
their binary expansions. On the other hand, Dawson’s Kayles doesn’t exhibit
this sparse space phenomenon. In Grundy’s Game only 1273 rare values have
appeared; the only one in the range 36184 < n ≤ 107 is G(82860) = 108. If
the rare values have indeed died out, then Grundy’s Game will ultimately be
periodic, but the period may be astronomical.

Amongst the comparative chaos, John Conway and Mike Guy have noted
a remarkable structure in the nim-values for Grundy’s Game, related to the
number 59. The probability that G(n + d) = G(n) is often as high as 1

4 if

d is near 59k and d ≡ k mod 3.

Examples of these pseudo-periods are 58, 61, 116, 119, 122, 290, 293, 296, 360,
412, 580, 583, 586, 589, 647, 650, 882, 952, 1172, where the last four correspond
to k = 11, 15, 16, 20.

6. Green Hackenbush

(See ONAG, pp. 165–172; WW, pp. 183–190.) This is played on a picture, as
in Blue-Red Hackenbush, but now all the edges are grEen, and may be chopped
by Either player, making it an impartial game. Every Green Hackenbush picture
has a nim-value: for example (Figure 6, right) the value of a string of 6 green
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Code Game Nim-sequence

·77 Kayles. Knock down one Ultimate period p = 12, 4̇12814721827̇
skittle, or two contiguous except for n = 0, 3, 6, 9, 11, 15, 18, 21, 22, 28,

skittles, from a row. 34,39,57,70, nim-value is resp. 0,3,3,4,
[Dudeney 1908, Loyd 1914]. 6,7,3,4,6,5,6,3,4,6.

·137 Dawson’s Chess. 3 × n board. 8̇112031103322445593301130211045374̇
White and Black pawns on ranks except 0 for n = 0, 14, 34 and 2 for
1 and 3. Capturing obligatory. n = 16, 17, 51. p = 34.

Looks partizan but isn’t.
[Dawson 1934; 1935].

·07 Dawson’s Kayles. Knock As for ·137, but shifted one term:
down 2 skittles, but only 0011203. . . in place of 011203. . .

if they’re contiguous.

·6 Officers. Take 1 counter from any No period found.
longer row. [Descartes 1953]. G(10342) = 256.

·007 Treblecross. One-dimensional No pattern yet found.
tic-tac-toe. (WW, pp. 93–94).

·077 Duplicate Kayles. Knock p = 24. Kayles with each nim-value
down 2 or 3 contiguous skittles repeated, 00112233114433. . .

[Guy and Smith 1956].

·7777 Double Kayles. Take up to p = 24. Kayles with each nim-value
4 beans from a heap; leave g replaced by the pair 2g, 2g + 1
rest in at most 2 heaps. or 2g + 1, 2g (according to a certain

[Guy and Smith 1956; WW, p. 98]. rule), 0123456732897654328945. . .

·156 See [Kenyon 1967]. p = 349.

·165 See [Austin 1976]. p = 1550.

4.3 Lasker’s Nim 0124356879. . . p = s = 4.

·8 (first cousin of) Triplicate Nim. Arithmetically periodic, p = 3,
Take 1 from heap, rest left in saltus = 1. 0000111222333444. . .
exactly 3 nonempty heaps.

·3F (F=15) Kenyon’s Game. Take p = 6, s = 3
1 from heap or take 2 and leave 0120123453456786789. . .

rest in any number of heaps
up to 3. [Kenyon 1967].

·E (E =14) Take 1, leave rest 001234153215826514. . .
in just 1, 2 or 3 heaps. G(246) = 128. No known pattern.

Table 3. Some sample take-and-break games.

edges is ∗6. It is clear that the six possible moves exactly parallel the six possible
moves that you can make from a heap of six beans.

We will see how to evaluate Green Hackenbush trees by the Colon Principle
and how to reduce any picture to a forest by the Fusion Principle.
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Green Hackenbush trees are examples of the ordinal sum G : H , which can be
defined [WW, p. 214] for any two games G and H

G : H = {GL, G : HL |GR, G : HR}
where any move in G annihilates H , while a move in H leaves G unaffected. The
Colon Principle [WW, pp. 184–185] states that H ≥ K implies G : H ≥ G : K,
and, in particular, that H = K implies G : H = G : K. That is, G : H depends
only on the value of H and not on its form. It may depend on the form of G,
because there are games G1 = G2 for which G1 : H 6= G2 : H .

The Colon Principle applies at branch points of Green Hackenbush trees,
allowing us to do nim-addition “up in the air.” For example, at a in Figure 6,
left, we have ∗3 + ∗2 = ∗; at b, ∗+ ∗ = 0; and at c, ∗ + ∗2 = ∗3, so the value is
the same as that of Figure 6, middle, where, at d, ∗2+ ∗2+ ∗+ ∗4 = ∗5, and the
tree is worth ∗6. Notice the interplay of ordinary addition along strings, with
nim-addition at branch points.
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Figure 6. Transforming a tree into a stalk.

Green Hackenbush pictures involving circuits can be evaluated by the Fusion
Principle (WW, pp. 186–188):

The value of a picture is unaltered
if you identify the nodes of a circuit.

The edges of the circuit then become loops, which may be replaced by twigs:
compare Figure 7, middle and right. Check that the value of Figure 7, left, is
∗8. In this way, every component of a Green Hackenbush picture can be reduced
to a tree, and hence to a string, and the strings are combined by nim-addition.

7. Welter’s Game

(See [Welter 1952; 1954; Berlekamp 1972]; ONAG, pp. 153–165; WW, pp. 472–
481.) This is another game whose analysis involves the interplay of nim-addition
and ordinary addition. It is a form of Nim with unequal heaps, but in order to
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Figure 7. Girl becomes tree.

keep track of empty heaps, only one of which is allowed, it’s better to play it
with coins on a strip of squares, numbered 0, 1, 2, . . . , with at most one coin on
a square. A move is to shift a coin leftwards to any unoccupied square, possibly
passing over other coins. The game ends when the k coins are on the leftmost
squares 0, 1, . . . , k − 1. Figure 8 shows a position with k = 7.

. . .

. . .v v v v v v v0 4 6 7 9 10 11 12 14 15 16 17 18 19 20 22 23 24

Figure 8. The position {1,2,3,5,8,13,21} in Welter’s Game.

To calculate the nim-value, or Welter function, [a|b|c| . . .]k of the position with
k coins on squares a, b, c, . . . , first note that for k = 1, [a] = a, and that for
k = 2, [a|b] is one less than the nim-sum of a and b: e.g., [1|3] = 1, [5|6] = 2. For
more than two coins, mate the pair that is congruent modulo the highest power
of two (it doesn’t matter that this pair may not be unique). Remove the mated
pair and find the best mated pair among the remaining k − 2 coins. Continue
until all coins are mated, except, when k is odd, for one coin, the spinster, s.
Then, if (a, b), (c, d), . . . are the mates, [a|b|c|d| . . .] may be calculated as the
nim-sum

[a|b] ∗
+ [c|d]

∗
+ . . . (

∗
+ [s])

where the last term is included just if k is odd.
In Figure 8 the best mates are (5,21), then (1,13), then (2,8), and 3 is the

spinster, so the nim-value is

[1|2|3|5|8|13|21] = [5|21]
∗
+ [1|13]

∗
+ [2|8]

∗
+ 3

= 15
∗
+ 11

∗
+ 9

∗
+ 3 = 14.
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It turns out that [a|b|c|d] = 0 just if the nim-sum a
∗
+ b

∗
+ c

∗
+ d = 0, so Welter’s

Game with four coins can be played with a Nim-like strategy. To play with three
coins, imagine a fourth coin on an extra square −1, and add one to each of the
numbers labelling the squares while you calculate your move. E.g., {2,5,8} is like
{0,3,6,9}, where the winning move would be to {0,3,5,6,}, so, in the three-coin
position, move to {2,4,5}.

The mating method makes it easy to calculate the nim-value of a Welter
position, but it’s not so easy to find the good moves that make the nim-value
zero. However, there’s a remarkable connexion with frieze patterns [Conway and
Coxeter 1973; WW, pp. 475–480], which work for nim-addition as well as for
multiplication and ordinary addition, and which allow you (or your computer)
both to calculate the value of the Welter function and to invert it.

Start with a row of zeros above the Welter position that you want to evaluate,
and manufacture a frieze pattern (so called because, when it is extended to the
right, it eventually repeats periodically) by completing diamonds

b

a d

c

using the rule a
∗
+ d = (b

∗
+ c) + 1,

so that c = [a|d]
∗
+ b, where the sums are still nim-sums. Lo and behold (Figure 9)

the value of the Welter function appears at the foot of the pattern, as follows
from a formula on page 159 on ONAG.

0 0 0 0 0 0 0 0
1 2 3 5 8 13 21

2 0 5 12 4 23
3 7 13 15 31

3 12 13 11
9 13 10

15 11
14

Figure 9. Calculating the Welter function from a frieze pattern.

If you want to change the value n = [a|b|c| . . .] to some n′ 6= n, then there are
unique a′ 6= a, b′ 6= b, c′ 6= c, . . . such that

[a′|b|c| . . . ] = n′ = [a|b′|c| . . . ] = [a|b|c′| . . . ] = . . .

and [a|b|c| . . . ] = n remains true if we replace any even number of a, b, c, . . . ,
n by the corresponding primed letters. This Even Alteration Theorem [ONAG,
pp. 160–162; WW, p. 477] may be written[

a | b | c |
a′|b′|c′| . . .

]
=

n

n′
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To find a′, b′, c′, . . . corresponding to a given n′, continue the bottom row of the
frieze pattern, n, n′, n, n′, n, . . . alternately, and then extend the pattern to the
right, using the same diamond rule. You will discover that the defining row, a,
b, c, . . . continues with the answers, a′, b′, c′, . . . !

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 5 8 13 21 15 0 37 35 10 11 19

2 0 5 12 4 23 25 14 36 5 40 0 23
3 7 13 15 31 24 25 41 5 15 45 29

3 12 13 11 17 25 33 15 12 9 47
9 13 10 6 31 46 4 7 11 8

15 11 0 9 41 8 13 7 11
14 0 14 0 14 0 14 0

Figure 10. Inverting the Welter function using a frieze pattern.

In Figure 10 we find the good moves in the position {1,2,3,5,8,13,21} by
choosing n′ = 0 and extending the pattern of Figure 9. If you extend it even
further to the right, you’ll see why it’s called a frieze pattern. If you believe the
algorithm, and read the second row of Figure 10,[

1 |2| 3 | 5 | 8 |13|21
15|0|37|35|10|11|19

]
=

14
0

Check that each move leads to a P-position. Some of the suggested moves,
e.g., 1 to 15, 3 to 37, are not legal, but, provided n′ < n, you’ll always find one
that is legal, in fact there is always an odd number of legal good moves. Here
there are three good moves: 2 to 0, 13 to 11, and 21 to 19.

We can even give you a strategy for the misère form (last player losing) of
Welter’s Game, if you’re willing to learn about Abacus Positions [WW, pp. 478–
481].

8. Coin-Turning Games

(See WW, pp. 429–456.) Several of the impartial games we’ve already men-
tioned, and a wide range of new games, can be realized by an idea of Hendrik
Lenstra. The P-positions in several of these turn out to correspond to the code-
words in some well-known and some not-so-well-known error-correcting codes.

Turning Turtles was originally played with turtles, but it’s less cruel to play
it with a row of coins (Figure 11). A move is to turn a head to a tail, with the
additional option of turning at most one other coin, to the left of it. This second

��
��
��
��
��
��
��
��
��
��
��
��
��
��

1 2 3 4 5 6 7

Figure 11. A Turning Turtles position, with coins 3, 4, 6, 7 showing heads.
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coin may go from head to tail, or from tail to head. The game is over when all
coins show tails, and the last player wins.

We leave you to verify that this is a disguise for Nim: if you number the coins
1, 2, 3, . . . from the left, then the nim-value of coin n is ∗n if it’s a head, and 0 if
it’s a tail. The nim-value of a general position is the nim-sum of the nim-values,
i.e., the nim-sum of the nim-values of the heads. For example, the good moves
in Figure 11 are to turn coin 6 to a tail; or to turn 7 to a tail and 1 to a head;
or to turn 4 to a tail and 2 to a head.

Mock Turtles is played in the same way, but a move may turn one, two or
three coins, provided the rightmost turned goes from head to tail (this is to make
the game satisfy the ending condition). We now number the coins from zero (the
Mock Turtle) and find the nim-value (or Grundy function), G(n), of the n-th
coin, when head up, to be:

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 . . .

G(n) = 1 2 4 7 8 11 13 14 16 19 21 22 25 26 28 31 32 35 37 . . .

These are the odious numbers that we met as common values in Kayles.

G(n) = 2n or 2n + 1.

To find which, write n in binary and append a check digit, 0 or 1, to make an
odd number of digits 1.

Moebius, Mogul and Moidores are the corresponding games in which a move
turns up to t coins, where t = 5, 7 and 9. We consider only odd values of t,
because the Mock Turtle Theorem gives us the results for even values of t:

Every nim-value for the t = 2m + 1 game
is an odious number.

The corresponding value for the t = 2m game
is gotten by dropping the final binary digit.

The nim-values for coins 0 to 17 (when head-up) in Moebius are shown in
Table 4. The structure of the P-positions in 18-coin Moebius is revealed on
replacing the coin numbers by the labels in the third row.

coin # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
nim-value 1 2 4 8 16 31 32 64 103 128 171 213 256 301 342 439 475 494
label ∞ 1 4 0 −4 −1 5 6 −8 2 −3 −5 8 3 −7 7 −6 −2

Table 4. Eighteen-coin Moebius gives the game its name.
Coins 0 to 5, with labels ∞, 0, ±1, ±4, clearly form a P-position (whichever
ones you turn over, I’ll turn over the rest). Starting from this, or indeed from
any P-position, we can find others by operating on the labels with any Möbius
transformation (modulo 17):

x → ax + b

cx + d
with ad− bc = 1.
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There are 1 + 102 + 153 + 153 + 102 + 1 P-positions
with respectively 0 6 8 10 12 18 heads.

If we drop the Mock Turtle (at ∞) we have the t = 4 game on 17 coins. The P-
positions in these two games correspond to the codewords in the [18,9,6] extended
quadratic residue code and the [17,9,5] quadratic residue code.

Similarly if we play 24-coin Mogul (t = 7, turn up to 7 coins) we find

1 + 759 + 2576 + 759 + 1 P-positions
with 0 8 12 16 24 heads

coinciding with the 212 codewords of the extended [24,12,8] Golay code. With
t = 6 and 23 coins the P-positions correspond to the codewords in the perfect
[23,12,7] Golay code. Robert Curtis [1976; 1977] has given a pictorial represen-
tation of this, the Miracle Octad Generator or “MOG”, which also shows the
connexion with the Steiner system S(5, 8, 24).

In the Ruler Game any number of contiguous coins may be turned (with the
rightmost always going from head to tail). If the coins are numbered from 1,
then the nim-value, G(n), is the highest power of 2 that divides n.

In Turnips (or Ternups) a move turns three equally spaced coins. Number
the coins from 0 and write n in ternary (base 3). Then G(n) is the k-th odious
number if the last digit 2 in the ternary expansion is in the k-th place from the
right, or G(n) = 0 if there is no digit 2 in the ternary expansion of n.

There is a plethora of such coin-turning games. They can also be played on a
two-dimensional array of coins. For example, we can play the Cartesian product,
A × B, of two one-dimensional games A and B, in which a move is to turn all
coins with coordinates (ai, bj), where {ai} and {bj} are sets of coins constituting
legal moves in games A and B respectively. To satisfy the ending condition, the
“most northeasterly” coin turned must go from head to tail (Figure 12).

Figure 12. A typical move in Moebius × Turnips.
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The nim-value of a (head-up) coin in such a game is given by the Tartan
Theorem:

The nim-values for the game A×B are
the nim-products of those for A and B:

GA×B(a, b) = GA(a)
∗× GB(b)

where GA(a) is the nim-value of coin number a in game A, etc., and
∗× denotes

nim-multiplication. Nim-multiplication [ONAG, pp. 52–53; Lenstra 1977] may
be defined from the field laws (e.g., associativity and distributivity over nim-
addition), together with the rule

n
∗× N = n×N for n < N

N
∗× N = 3N/2

where N is any Fermat power of 2 (2, 4, 16, . . . , 22h

, . . .). For example, 2
∗× 2 = 3,

because 2 is a Fermat power, while 2
∗× 3 = 2

∗× (2
∗
+ 1) = 3

∗
+ 2 = 1. A more

complicated example is

13
∗× 7 = (4

∗× 3
∗
+ 1)

∗× 7 = (4
∗× (2

∗
+ 1))

∗× (4
∗
+ 2

∗
+ 1)

∗
+ 7

= 4
∗× 4

∗× (2
∗
+ 1)

∗
+ 4

∗× 2
∗× (2

∗
+ 1)

∗
+ 4

∗× (2
∗
+ 1)

∗
+ 7

= 6
∗× (2

∗
+ 1)

∗
+ 4

∗× (3
∗
+ 2)

∗
+ 4

∗× 3
∗
+ 7

= (4
∗
+ 2)

∗× (2
∗
+ 1)

∗
+ 4

∗× 1
∗
+ 12

∗
+ 7

= 4
∗× 2

∗
+ 2

∗× 2
∗
+ 4

∗
+ 2

∗
+ 4

∗
+ 11

= 8
∗
+ 3

∗
+ 9

= 2.

The assiduous reader will verify that the nim-cube-roots of 1 are 1, 2 and 3, and
the nim-fifth-roots are 1, 8, 10, 13, 14.

9. Misère Nim and an Awful Warning

The power of the Sprague-Grundy theory derives from its reduction of all
impartial games to the game of Nim. But particular games may not break up
naturally into disjunctive sums, so that much of the force is lost. There are
other reasons why it may be difficult or tedious or hard in the technical sense,
to calculate the nim-value of a position. Also, the theory applies only to normal
play.

When Bouton gave his analysis of Nim, he also noted that only a small mod-
ification is needed to cover the misère version, in which the last player loses. To
win misère nim, play just as in ordinary Nim until all the heaps, with just one
exception, contain a single bean. Then take all the beans from the exceptional
heap, or all the beans but one, so as to leave an odd number of heaps of size one.



IMPARTIAL GAMES 17

It’s tempting to think (and several people have been tempted to write) that
you can play misère impartial games just like normal impartial games until very
near the end, when you . . .

BUT THAT’S NOT TRUE!

The situation is very complicated. The little that is known in general is given
in WW, Chapter 13. However, an intriguing breakthrough was made recently by
William Sibert and John Conway [1992], who have given an analysis of Misère
Kayles and Thane Plambeck [1992] has used their method to analyze a small
number of other games.
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